Por qué sobreestimamos los tiburones y subestimamos los cocos: el poder del sesgo de disponibilidad

Continuamos con esta serie de post donde exploramos las ideas clave del libro Pensar rápido, pensar despacio de Daniel Kahneman —una obra fundamental para entender cómo pensamos, decidimos… y, por extensión, cómo predecimos— y hoy hablaremos de uno de los sesgos más sutiles, pero también más poderosos: el sesgo de disponibilidad.

¿Qué es el sesgo de disponibilidad?

El sesgo de disponibilidad es la tendencia que tenemos a juzgar la probabilidad o frecuencia de un evento según la facilidad con la que recordamos ejemplos de él. En otras palabras: cuanto más fácilmente recordamos algo, más probable nos parece que sea.

No estimamos con datos, sino con nuestros recuerdos y éstos —como bien explica Kahneman— no son un registro fiel del mundo, sino un archivo sesgado por la emoción, la atención y los medios.

Un ejemplo clásico del libro

Kahneman y Tversky realizaron un experimento muy revelador: preguntaron a un grupo de personas si, en inglés, hay más palabras que empiecen por la letra K o más palabras que tengan la K como tercera letra.

La mayoría respondió que hay más palabras que empiezan por K, porque es más fácil recordar ejemplos como kite o king que pensar en palabras con K en la tercera posición (make, bake…). Sin embargo, la respuesta correcta era la contraria: hay más palabras con “K” en la tercera posición (¡3 veces más!).

El problema no es la falta de inteligencia, sino el mecanismo del Sistema 1, el pensamiento rápido e intuitivo: confunde “lo fácil de recordar” con “lo frecuente en el mundo”.

Seguir leyendo «Por qué sobreestimamos los tiburones y subestimamos los cocos: el poder del sesgo de disponibilidad»

Reseña del libro «Pensar rápido, pensar despacio»

Introducción

Pensar rápido, pensar despacio es un libro publicado en 2011 por el psicólogo Daniel Kahneman (Tel Aviv, 1934 – Nunningen, 2024), profesor emérito en la Universidad de Princeton y galardonado con el Premio Nobel de Economía en 2002, junto a Vernon Smith. Su mayor aportación, desarrollada junto con Amos Tversky, fue la Teoría de las perspectivas, que muestra cómo los individuos toman decisiones en contextos de incertidumbre alejándose de los principios de la probabilidad, recurriendo a atajos mentales o heurísticos.

En esta obra, Kahneman sintetiza décadas de investigación sobre cómo pensamos y decidimos, presentando de manera accesible la existencia de dos modos de pensamiento: el Sistema 1, rápido, automático e intuitivo; y el Sistema 2, lento, deliberado y analítico. La peculiaridad es que la mayor parte de las veces no somos conscientes de cuál de ellos domina nuestras decisiones.

El libro se organiza en tres grandes bloques: en el primero se explica el funcionamiento de los dos sistemas de pensamiento; en el segundo se analizan los sesgos y heurísticos que nos llevan a errores; y en el tercero se aborda cómo tomamos decisiones bajo incertidumbre, incluyendo la teoría de las perspectivas y la distinción entre el yo que experimenta y el yo que recuerda.

Seguir leyendo «Reseña del libro «Pensar rápido, pensar despacio»»

Cómo hacer un post-mortem de tus predicciones

Para concluir la serie de posts donde hemos analizado y reflexionado sobre conceptos e ideas del libro Superforecasting: The Art and Science of Prediction, en esta entrada hablaremos de la práctica del post-mortem: una herramienta que nos ayudará a mejorar nuestras futuras predicciones a partir de hacer las “autopsias” de nuestras predicciones pasadas.

Cuando lanzamos una predicción sobre el futuro, el tiempo se convierte en juez.
La fecha llega, el evento ocurre (o no) y ya no hay incertidumbre. Entonces aparece un momento crítico que a menudo pasamos por alto: el análisis post-mortem.

Un post-mortem es la autopsia de una predicción ya caducada. No se trata solo de comprobar si “acertamos” o “fallamos”, sino de contrastar nuestra estimación con el resultado real y, sobre todo, de sacar conclusiones que nos hagan mejores pronosticadores.

Seguir leyendo «Cómo hacer un post-mortem de tus predicciones»

¿Cómo saber si tus predicciones son buenas?

Esta entrada, como las anteriores, parte de una idea clave del libro Superforecasting: The Art and Science of Prediction de Philip Tetlock y Dan Gardner. Allí se insiste en que hacer predicciones no es solo cuestión de acertar o fallar, sino de aprender a evaluar la calidad de nuestros juicios para mejorarlos con el tiempo.

Y para mejorar, primero hay que medir.
¿Medir qué exactamente?
👉 La calidad de tus predicciones.

En este post te presento tres conceptos clave para evaluar predicciones, especialmente si te interesa convertirte en un autèntico superforecaster:

  • Calibración
  • Resolución
  • Métricas cuantitativas como el Brier Score o el MAPE
Seguir leyendo «¿Cómo saber si tus predicciones son buenas?»

Priors bayesianas (3/3): Distribuciones continuas para modelar creencias que fluyen

En las dos entradas anteriores presentamos el concepto de prior bayesiana y cómo construirla usando distribuciones discretas. Sin embargo, no todo en la vida se cuenta con números enteros. A veces, lo que queremos modelar fluye de forma continua: proporciones, medias, tiempos, tasas…
En este último capítulo de la serie, exploramos las distribuciones continuas más útiles para construir priors cuando las variables no se cuentan, sino que se miden.

¿Qué es una distribución continua?

Una distribución de probabilidad continua describe el comportamiento de una variable que puede tomar cualquier valor dentro de un intervalo, incluso infinitos valores posibles.

Por ejemplo: La proporción de pacientes que se recuperan de una enfermedad, el tiempo de espera en una consulta médica o el ingreso mensual medio de una familia.

Seguir leyendo «Priors bayesianas (3/3): Distribuciones continuas para modelar creencias que fluyen»

Priors bayesianas (1/3):¿Qué es una prior?

Imagina esto:
Estás buscando setas en un bosque. Nunca has estado allí, pero alguien te ha dicho que las mejores suelen crecer bajo robles. Aunque aún no has visto ninguna, ya sabes por dónde empezar a buscar. Eso que sabes antes de empezar a observar es tu conocimiento previo… o lo que en estadística bayesiana llamamos una distribución a priori, o simplemente: una prior.

¿Qué es una prior?

En el mundo de la inferencia bayesiana, una prior es nuestra forma de representar, con números, lo que creemos que puede pasar antes de ver los datos.

Es como una apuesta informada: antes de lanzar una moneda, quizás sospechas que está trucada porque el borde está desgastado. Eso afecta tu expectativa antes incluso de verla caer.

Cuando usamos el Teorema de Bayes, la prior se combina con los datos observados (a través de la verosimilitud) para actualizar nuestras creencias. El resultado es lo que llamamos la distribución posterior.

Seguir leyendo «Priors bayesianas (1/3):¿Qué es una prior?»

Bayes: de los milagros a los algoritmos

El mundo en que nació Thomas Bayes era un lugar mucho más borroso de lo que creemos. Corría el siglo XVIII, soplaban vientos de Ilustración y la mayoría de las mentes brillantes de la época creían que la verdad absoluta estaba al alcance del hombre moderno. Mediante la razón, grandes pensadores se afanaban en elaborar leyes y ecuaciones deterministas que pretendían revelar el funcionamiento del universo, como si fuera un reloj suizo. La incertidumbre, esa plaga moderna, apenas comenzaba a abrirse paso.

Bayes, un clérigo presbiteriano de mirada invisible, nunca fue un gran protagonista. No tuvo el carisma de Newton ni la osadía de Laplace. Vivía en la sombra, en bibliotecas polvorientas, escribiendo silenciosamente sobre teología, moral y con una especial fascinación por las matemáticas.

Fue en ese clima donde, hacia 1750, concibió una idea que cambiaría el mundo. Una idea que, como muchas de las grandes revoluciones, fue ignorada durante décadas: que no había que esperar infinitas repeticiones de un evento para saber qué tan probable era, que podíamos estimar la incertidumbre con la información que ya teníamos. Que podíamos, en suma, inferir hacia adelante.

Seguir leyendo «Bayes: de los milagros a los algoritmos»